If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2+6-125=0
We add all the numbers together, and all the variables
9x^2-119=0
a = 9; b = 0; c = -119;
Δ = b2-4ac
Δ = 02-4·9·(-119)
Δ = 4284
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4284}=\sqrt{36*119}=\sqrt{36}*\sqrt{119}=6\sqrt{119}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{119}}{2*9}=\frac{0-6\sqrt{119}}{18} =-\frac{6\sqrt{119}}{18} =-\frac{\sqrt{119}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{119}}{2*9}=\frac{0+6\sqrt{119}}{18} =\frac{6\sqrt{119}}{18} =\frac{\sqrt{119}}{3} $
| -2x+3=-x+3 | | 3k+45=8k=25 | | 2x-10=-2x+2 | | (2x-3)(x)=65 | | x^2=|x| | | -9×^2-32y=-16y^2+128 | | 4=v÷11-2 | | 12h=5 | | x=13+4/7 | | 7x+4=99 | | 84+1p=8 | | (x-11)+x=10 | | (2x+5)-4=3 | | 1/5(x+2)=2/10x+3/5 | | (2x-8)=18 | | (3x+-6)/(x+4)=0 | | |2x-8|=18 | | 0=-4x^2-48x-141 | | c/8.3=11.3 | | X^2-2x-47=9+8x | | -4(3x-5)=5(2x+4) | | -2x^2+x=-4x^2+x+128 | | y=-93y | | |2x-5|=4-|x-3| | | 5x2+125x=0 | | 4+2(z-2)=-5z+4 | | 1/3b=5/6 | | 3^-5x=17^-x+8 | | y/12=3/2 | | 21+3x=3(x+7) | | (7n-1)(7n+5)=0 | | 10r=160 |